3.3032 \(\int \frac{1}{(a+b (c x^n)^{2/n})^2} \, dx\)

Optimal. Leaf size=73 \[ \frac{x \left (c x^n\right )^{-1/n} \tan ^{-1}\left (\frac{\sqrt{b} \left (c x^n\right )^{\frac{1}{n}}}{\sqrt{a}}\right )}{2 a^{3/2} \sqrt{b}}+\frac{x}{2 a \left (a+b \left (c x^n\right )^{2/n}\right )} \]

[Out]

x/(2*a*(a + b*(c*x^n)^(2/n))) + (x*ArcTan[(Sqrt[b]*(c*x^n)^n^(-1))/Sqrt[a]])/(2*a^(3/2)*Sqrt[b]*(c*x^n)^n^(-1)
)

________________________________________________________________________________________

Rubi [A]  time = 0.0240274, antiderivative size = 73, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 17, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.176, Rules used = {254, 199, 205} \[ \frac{x \left (c x^n\right )^{-1/n} \tan ^{-1}\left (\frac{\sqrt{b} \left (c x^n\right )^{\frac{1}{n}}}{\sqrt{a}}\right )}{2 a^{3/2} \sqrt{b}}+\frac{x}{2 a \left (a+b \left (c x^n\right )^{2/n}\right )} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*(c*x^n)^(2/n))^(-2),x]

[Out]

x/(2*a*(a + b*(c*x^n)^(2/n))) + (x*ArcTan[(Sqrt[b]*(c*x^n)^n^(-1))/Sqrt[a]])/(2*a^(3/2)*Sqrt[b]*(c*x^n)^n^(-1)
)

Rule 254

Int[((a_) + (b_.)*((c_.)*(x_)^(q_.))^(n_))^(p_.), x_Symbol] :> Dist[x/(c*x^q)^(1/q), Subst[Int[(a + b*x^(n*q))
^p, x], x, (c*x^q)^(1/q)], x] /; FreeQ[{a, b, c, n, p, q}, x] && IntegerQ[n*q] && NeQ[x, (c*x^q)^(1/q)]

Rule 199

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[(x*(a + b*x^n)^(p + 1))/(a*n*(p + 1)), x] + Dist[(n*(p +
 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[p, -1] && (In
tegerQ[2*p] || (n == 2 && IntegerQ[4*p]) || (n == 2 && IntegerQ[3*p]) || Denominator[p + 1/n] < Denominator[p]
)

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{\left (a+b \left (c x^n\right )^{2/n}\right )^2} \, dx &=\left (x \left (c x^n\right )^{-1/n}\right ) \operatorname{Subst}\left (\int \frac{1}{\left (a+b x^2\right )^2} \, dx,x,\left (c x^n\right )^{\frac{1}{n}}\right )\\ &=\frac{x}{2 a \left (a+b \left (c x^n\right )^{2/n}\right )}+\frac{\left (x \left (c x^n\right )^{-1/n}\right ) \operatorname{Subst}\left (\int \frac{1}{a+b x^2} \, dx,x,\left (c x^n\right )^{\frac{1}{n}}\right )}{2 a}\\ &=\frac{x}{2 a \left (a+b \left (c x^n\right )^{2/n}\right )}+\frac{x \left (c x^n\right )^{-1/n} \tan ^{-1}\left (\frac{\sqrt{b} \left (c x^n\right )^{\frac{1}{n}}}{\sqrt{a}}\right )}{2 a^{3/2} \sqrt{b}}\\ \end{align*}

Mathematica [A]  time = 0.0447284, size = 73, normalized size = 1. \[ \frac{x \left (c x^n\right )^{-1/n} \tan ^{-1}\left (\frac{\sqrt{b} \left (c x^n\right )^{\frac{1}{n}}}{\sqrt{a}}\right )}{2 a^{3/2} \sqrt{b}}+\frac{x}{2 a \left (a+b \left (c x^n\right )^{2/n}\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*(c*x^n)^(2/n))^(-2),x]

[Out]

x/(2*a*(a + b*(c*x^n)^(2/n))) + (x*ArcTan[(Sqrt[b]*(c*x^n)^n^(-1))/Sqrt[a]])/(2*a^(3/2)*Sqrt[b]*(c*x^n)^n^(-1)
)

________________________________________________________________________________________

Maple [F]  time = 2.371, size = 0, normalized size = 0. \begin{align*} \int \left ( a+b \left ( c{x}^{n} \right ) ^{2\,{n}^{-1}} \right ) ^{-2}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*(c*x^n)^(2/n))^2,x)

[Out]

int(1/(a+b*(c*x^n)^(2/n))^2,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{x}{2 \,{\left (a b c^{\frac{2}{n}}{\left (x^{n}\right )}^{\frac{2}{n}} + a^{2}\right )}} + \int \frac{1}{2 \,{\left (a b c^{\frac{2}{n}}{\left (x^{n}\right )}^{\frac{2}{n}} + a^{2}\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*(c*x^n)^(2/n))^2,x, algorithm="maxima")

[Out]

1/2*x/(a*b*c^(2/n)*(x^n)^(2/n) + a^2) + integrate(1/2/(a*b*c^(2/n)*(x^n)^(2/n) + a^2), x)

________________________________________________________________________________________

Fricas [A]  time = 1.49737, size = 412, normalized size = 5.64 \begin{align*} \left [\frac{2 \, a b c^{\frac{2}{n}} x -{\left (b c^{\frac{2}{n}} x^{2} + a\right )} \sqrt{-a b c^{\frac{2}{n}}} \log \left (\frac{b c^{\frac{2}{n}} x^{2} - 2 \, \sqrt{-a b c^{\frac{2}{n}}} x - a}{b c^{\frac{2}{n}} x^{2} + a}\right )}{4 \,{\left (a^{2} b^{2} c^{\frac{4}{n}} x^{2} + a^{3} b c^{\frac{2}{n}}\right )}}, \frac{a b c^{\frac{2}{n}} x +{\left (b c^{\frac{2}{n}} x^{2} + a\right )} \sqrt{a b c^{\frac{2}{n}}} \arctan \left (\frac{\sqrt{a b c^{\frac{2}{n}}} x}{a}\right )}{2 \,{\left (a^{2} b^{2} c^{\frac{4}{n}} x^{2} + a^{3} b c^{\frac{2}{n}}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*(c*x^n)^(2/n))^2,x, algorithm="fricas")

[Out]

[1/4*(2*a*b*c^(2/n)*x - (b*c^(2/n)*x^2 + a)*sqrt(-a*b*c^(2/n))*log((b*c^(2/n)*x^2 - 2*sqrt(-a*b*c^(2/n))*x - a
)/(b*c^(2/n)*x^2 + a)))/(a^2*b^2*c^(4/n)*x^2 + a^3*b*c^(2/n)), 1/2*(a*b*c^(2/n)*x + (b*c^(2/n)*x^2 + a)*sqrt(a
*b*c^(2/n))*arctan(sqrt(a*b*c^(2/n))*x/a))/(a^2*b^2*c^(4/n)*x^2 + a^3*b*c^(2/n))]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (a + b \left (c x^{n}\right )^{\frac{2}{n}}\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*(c*x**n)**(2/n))**2,x)

[Out]

Integral((a + b*(c*x**n)**(2/n))**(-2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (\left (c x^{n}\right )^{\frac{2}{n}} b + a\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*(c*x^n)^(2/n))^2,x, algorithm="giac")

[Out]

integrate(((c*x^n)^(2/n)*b + a)^(-2), x)